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A B S T R AC T

The unknown thing to be known appeared to me as some stretch of earth or
hard marl, resisting penetration. . . the sea advances insensibly in silence,
nothing seems to happen, nothing moves, the water is so far off you hardly
hear it. . . yet it finally surrounds the resistant substance.

(Alexander Grothendieck, Récoltes et semailles, 1985–1987, pp. 552-3-1
The Rising Sea)

In the following we will give a very brief introduction to some of the intricacies of
Sobolev spaces. We will start from scratch by first giving some motivation as to how
one might have come up with these entities. After having done so, we will prove an
embedding theorem and talk a bit about differentiation. Last but not least, we will
concern ourselves with the question of duality. Chapter 1-3 are based on the lecture
notes [1] of professor Donninger, while chapter 4 is based on the lecture notes [2] of
professor Kunzinger.
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1 N OTAT I O N A N D C O N V E N T I O N S

We will always assume that the underlying vector space for our Lp-spaces, Sobolev
spaces, etc. will be Rd , where d ∈N is some fixed dimension. Every integral will
be taken over all of Rd and thus we will simply write

∫
instead of

∫
Rd . Moreover,

expressions like L2(Rd),C ∞
b (Rd) will be shortened to L2,C ∞

b respectively.
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2 I N T RO D U C T I O N

The concept of differentiation is probably one of the most important ideas in all of
mathematics. It is only natural then to search for some kind of generalization of this
concept, that is, to define some form of "weaker" differentiability of suitable functions.
Of course, accompanied with such considerations of weakly differentiable functions,
there is always the question of which spaces might accommodate them. In this section
we will both define these spaces, as well as motivate their origin.
Our starting point will be the integral equation∫

(Dα
ψ) f = (−1)|α|

∫
ψ(Dα f ) (1)

for ψ , f ∈S and α ∈Nd . Of course, the left hand side of the above equation still
makes sense if we drop the differentiability assumption on f , that is, if we solely assume
f ∈ L2. This leads quite naturally to a concept of a weaker derivative in the following
way: We say that f ∈ L2 is weakly differentiable with respect to Dα , if there exists
g ∈ L2 such that ∫

(Dα
ψ) f = (−1)|α|

∫
ψg (2)

holds for all ψ ∈ S . It is rather easily shown that, in case f is differentiable, this
definition coincides with the usual derivative. Now the question is how we shall define
those spaces in which this broader class of differentiable functions live. Of course, with
such functional spaces we also need some kind of topology, in the best case we would
like to have a Hilbert space structure and we would also like the Schwartz space to
be densely embedded in these new spaces. Let k ∈N and denote by Hk the space of
L2-functions which are weakly differentiable with respect to all Dα for all α ∈Nd with
|α| ≤ k. Suppose now that we have already endowed Hk with a norm topology induced
by ‖.‖Hk and such that S is dense in Hk. If we then pick some element ψ ∈ Hk there

must be a sequence {ψk} ⊂S so that ψk
Hk
−→ ψ . What we certainly want to expect

from such a sequence is then that the derivatives {Dαψk} ⊂S will converge to the
corresponding weak derivative of ψ in L2. More precisely, if Dαψ ∈ L2 represents the

weak derivative of ψ ∈ Hk, then we would like to have that ‖Dα(ψk−ψ)‖L2

k→∞

−→ 0.
Thus we have found the norm which will induce the topology on our space in question,
namely,

‖ψ‖Hk = ∑
|α|≤k
‖Dα

ψ‖L2 (3)

for ψ ∈S . Taking the completion of the normed space (S ,‖.‖Hk) yields Hk for k ∈N.
However, we still cannot be sure if Hk carries a Hilbert space structure. In order to
take the next step, we need to remind ourselves of our favorite unitary automorphism
on both the Schwartz space S and on L2, namely, the Fourier transform F . One
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of the strengths of the Fourier transform is its interaction with derivatives, that is,
F (Dαψ) = (2πi.)αFψ for ψ ∈S . Having this fact ready we can prove that

∑
|α|≤k
‖Dα

ψ‖L2 ' ‖〈.〉kFψ‖L2 (4)

Indeed, using both Plancherel’s Theorem and the Multinomial Theorem we calculate

∑
|α|≤k
‖Dα

ψ‖L2 = ∑
|α|≤k
‖F (Dα

ψ)‖L2 ' ∑
|α|≤k
‖ξ αFψ‖L2 . ∑

|α|≤k
‖〈.〉|α|Fψ‖L2 (5)

. ‖〈.〉kFψ‖L2 (6)

Conversely,

‖〈.〉kF f‖L2 ' ‖(1+
d

∑
j=1
|ξ j|)kFψ‖L2 =

∥∥∥∥ ∑
|(β0,...,βd)|=k

(
k
β

)
∏
j≥1
|ξ j|β jFψ

∥∥∥∥ (7)

. ∑
α∈Nd ,|α|≤k

‖ξ αFψ‖L2 ' ∑
α∈Nd ,|α|≤k

‖F (Dα
ψ)‖L2 = ∑

α∈Nd ,|α|≤k

‖Dα
ψ‖L2 (8)

as wanted. Thus we can generalize our Sobolev spaces and define Hs even for s ∈R

as the completion of the Schwartz space S with respect to the norm ‖〈.〉sFψ‖L2 for
ψ ∈S . This also shows us that the spaces Hs for s ∈R are Hilbert spaces. The inner
product is simply given by(

ψ | ζ
)

Hs =
(
〈.〉sFψ | 〈.〉sFζ

)
L2 (ψ ,ζ ∈S ) (9)

3 S O B O L E V I N E Q UA L I T I E S A N D E M B E D D I N G S

From what we have done to define our beloved Sobolev spaces, it is only natural to ask
whether or not there is some relationship with the Banach spaces (C k

b ,‖.‖W k,∞) (k ∈N)
with ‖ f‖W k,∞ = ∑

|α|≤k
‖Dα f‖L∞ for f ∈ C k

b . To this end, we need to introduce a most

important inequality:

Lemma 1. Let s > d
2 . Then

‖ψ‖L∞ . ‖ψ‖Hs (10)

for all ψ ∈S .

Proof. For fixed ξ ∈Rd we estimate

|ψ(ξ )|= |F−1Fψ(ξ )| ≤
∫
|Fψ| ≤ ‖〈.〉−s‖L2︸ ︷︷ ︸

<∞ for s> d
2

‖〈.〉sFψ‖L2 ' ‖ψ‖Hs (11)

As this estimate is independent of ξ , we clearly have ‖ψ‖L∞ . ‖ψ‖Hs .

https://en.wikipedia.org/wiki/Multinomial_theorem
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Theorem 1. Let s > d
2 and fix k ∈N. Then we have a continuous linear embedding

Hs+k ↪→ C k
b (12)

which is the identity restricted to the Schwartz space S .

Proof. First, let us try to construct an appropriate map Hs+k → C k
b . So fix some

ψ ∈Hs+k. By construction there must exist a sequence of Schwartz functions {ψ j}⊂S
such that ψ j→ ψ in Hs+k. By Lemma 1 we estimate

‖Dα
ψ j−Dα

ψl‖L∞ . ‖Dα
ψ j−Dα

ψl‖Hs . ‖ψ j−ψl‖Hs+k (13)

and hence all {Dαψ j} ⊂S ⊂ C k
b with |α| ≤ k are Cauchy with respect to the uniform

topology, that is, {ψ j} is Cauchy in (C k
b ,‖.‖W k,∞) and there must exist some ψ̃ ∈ C k

b

such that ψ j
‖.‖Wk,∞−→ ψ̃ . Of course this is independent of the approximating sequence

{ψ j}, since ‖ϕ j−ψ j‖L∞ . ‖ϕ j−ψ j‖Hs+k for any other approximating sequence {ϕ j}.
Thus we obtain a well defined (linear) map

ζ : Hs+k→ C k
b ψ 7→ ψ̃ (14)

Continuity of ζ immediately follows by our previous estimate. Suppose now that
ζ (ψ) = 0 for some ψ ∈ Hs+k. But then of course(

ϕ | ψ
)

L2 =
∫

ϕψ
∗ =

∫
ϕζ (ψ)∗ = 0 (15)

for every ϕ ∈S . Hence, if {ψ j} ⊂S is again an approximating sequence of ψ in
Hs+k we estimate

‖ψ j−ψl‖2
Hs+k = ‖ψ j‖2

Hs+k + ‖ψl|2Hs+k−2Re
(
〈.〉2(s+k)Fψ j

∣∣Fψl
)

L2 (16)

= ‖ψ j‖2
Hs+k + ‖ψl‖2

Hs+k−2Re
(
F−1[〈.〉2(s+k)Fψ j

]∣∣ψl
)

L2︸ ︷︷ ︸
→0 for l→∞

(17)

l→∞−→ ‖ψ j‖2
Hs+k + ‖ψ‖2

Hs+k (18)

And therefore,

0 = lim
j
‖ψ j−ψ‖Hs+k = 2‖ψ‖Hs+k =⇒ ψ = 0 (19)

Remark 1. Note that the integral
∫

ϕψ∗ in equation (15) makes perfect sense, since
this is to be interpreted as the limit∫

ϕψ
∗ = lim

j

∫
ϕψ
∗
j

dominated convergence
=

∫
ϕ(lim

j
ψ
∗
j ) =

∫
ϕζ (ψ)∗ (20)

for some approximating sequence {ψ j} ⊂S for ψ in Hs+k. Moreover, equation (15)
in particular tells us that ψ = 0 in L2 and by equation (19) we deduce that ψ = 0 in L2

already implies ψ = 0 in Hs. Moreover, this yields a continuous embedding Hs ↪→ L2

for all s≥ 0.
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The space Hs is called an inhomogenous L2-based Sobolev space of order s. For
s >−d

2 we may also define the homogenous Sobolev spaces Ḣs as the completion of
the Schwartz space S with respect to the norm

‖ψ‖Ḣs = ‖|.|sFψ‖L2 (ψ ∈S ) (21)

It might be useful to note:

Lemma 2. We have

‖ψ‖Hs ' ‖ψ‖L2 + ‖ψ‖Ḣs (22)

‖ψ‖Hs+1 ' ‖ψ‖L2 +∑
i
‖∂iψ‖Ḣs (23)

for all ψ ∈S .

Proof. We have

‖ψ‖2
Hs ' ‖(1+ |.|s)Fψ‖2

L2 =
∫
|Fψ|2 +

∫
|.|2s|Fψ|2 = ‖ψ‖2

L2 + ‖ψ‖2
Ḣs (24)

' (‖ψ‖L2 + ‖ψ‖Ḣs)2 (25)

On the other hand

‖ψ‖2
Hs+1 ' ‖(1+ |.|s+1)Fψ‖2

L2 '
∫ [

(1+∑
i
|ξi|s+1)|Fψ|

]2

(26)

'
∫ [
|Fψ|+∑

i
|ξi|s|F (∂iψ)|

]2

.
∫
|Fψ|2 +∑

i

∫
|.|2s|F (∂iψ)|2 (27)

' (‖ψ‖L2 +∑
i
‖∂iψ‖Ḣs)2 (28)

and

‖ψ‖2
L2 +∑

i
‖∂iψ‖2

Ḣs '
∫
|Fψ|2 +∑

i

∫
|.|2s|ξi|2︸ ︷︷ ︸
.|.|2(s+1)

|Fψ|2 (29)

.
∫
(1+ |.|s+1)2|Fψ|2 ' ‖ψ‖2

Hs+1 (30)

4 O N T H E T O P I C O F D I F F E R E N T I AT I O N

Fix some ψ ∈Hs for s≥ 1 and suppose that we have weak derivatives ∂iψ for 1≤ i≤ d.
Note that these derivatives exist, since for an approximating sequence {ψ j} of ψ in Hs

we have that the sequences {∂iψ j} j ⊂S are Cauchy in L2 for all 1≤ i≤ d and thus
converge to some ∂iψ ∈ L2. Of course, by construction, all ∂iψ are in Hs−1, since

‖∂iψ j−∂iψl‖Hs−1 . ‖ψ j−ψl‖Hs (31)



O N T H E T O P I C O F D I F F E R E N T I AT I O N 7

So what if we supposed that there were an approximating sequence {ψ j} ⊂S for ψ

such that we even had that all {∂iψ j} ⊂S were Cauchy in Hs, that is, if we assumed
that all weak derivatives of ψ were also in Hs? Naturally, we would guess (or hope) that,
just as in the classical case of the definition of derivatives, this would imply ψ ∈ Hs+1.
However, in order to show this a bit of machinery is required.

Lemma 3. Let ϕ ∈S be non-negative such that
∫

ϕ = 1 and set ϕk := kdϕ(k.). If
(ψl) ⊂S is Cauchy in Hs for some s≥ 0, then the function

ψ̃k := lim
l
(ϕk ?ψl) (limit is to be interpreted pointwise) (32)

is in C ∞
b and satisfies

‖ψl− ψ̃l‖Hs → 0 (33)

We will refrain from proving this in order to save both space and time. However,
proving that the functions ψ̃k are well defined and that they are in C ∞

b is actually quite
easy. Indeed, for all α ∈Nd we may estimate

‖Dα(ϕk ?ψl)−Dα(ϕk ?ψ j)‖L∞ = ‖Dα
ϕk ? (ψl−ψ j)‖L∞ (34)

≤ ‖Dα
ϕk‖L2‖ψl−ψ j‖L2 . ‖ψl−ψ j‖Hs (35)

which shows that
{

ϕk ?ψl
}

l ⊂S is Cauchy in W m,∞ for all m ∈N. Thus by complete-
ness ψ̃k ∈ C ∞

b .

Remark 2. If {ψ j} ⊂S is Cauchy in Hs as above, then we note that

∂iψ̃k = lim
l
(ϕk ?∂iψl) (36)

This is a tremendously nice property which we will exploit fully now. First of all observe
that if {ψ j},{ζ j} ⊂S are two approximating sequences for ψ ∈ Hs, then ψ̃k = ζ̃k (so
we have independence of the chosen approximating sequence). Indeed,

‖ϕk ?ψl−ϕk ?ζl‖L2 = ‖ϕk ? (ψl−ζl)‖L2 ≤ ‖ϕk‖L1‖ψl−ζl‖L2 → 0 (37)

and therefore

0 = lim
l
‖ϕk ?ψl−ϕk ?ζl‖L2 = ‖ψ̃k− ζ̃k‖L2 (38)

which shows ψ̃k = ζ̃k almost everywhere, and as both functions are continuous equality
holds.

Lemma 4. Suppose we are given a sequence (ψ j) ⊂ C ∞ which is Cauchy in Hs. Set
ψ̂ j := χ( .

j )ψ j, where χ ∈ C ∞
c with χ = 1 on {|x| ≤ 1} and χ = 0 on {|x| ≥ 2}. Then

{ψ̂ j} ⊂S is Cauchy in Hs. In particular,

‖ψ j− ψ̂ j‖Hs → 0 (39)
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Again we will not prove this result, as this is solely technical. We can finally verify
what we could have sworn to be true anyways.

Theorem 2. Let ψ ∈ Hs with s ≥ 1 and suppose that all ∂iψ ∈ Hs−1, 1 ≤ i ≤ d, are
actually in Hs. Then ψ ∈ Hs+1.

Proof. Let {ψ j} ⊂S be an approximating sequence for ψ ∈ Hs. By assumption we
know that the weak derivatives ∂iψ admit approximating sequences {ψ∂i

j } ⊂S with

‖ψ∂i
j −∂iψ‖Hs−1 → 0 and ‖ψ∂i

j −∂iψ‖Hs → 0 for every 1≤ i≤ d. In particular,

‖ψ∂i
j −∂iψ j‖Hs−1 → 0 (40)

for every 1≤ i≤ d. This means that both {∂iψ j} and {ψ∂i
j } represent (or converge) to

the same element in Hs−1 and hence by independence of the approximating sequence
we infer

∂iψ̃k = lim
j
(ϕk ?∂iψ j) = lim

l
(ϕk ?ψ

∂i
j ) = ψ̃∂ik (41)

Hence by lemma 3, {ψ̃∂i k} ⊂ C ∞
b is Cauchy in Hs and satisfies ‖ψ∂i

l − ψ̃∂
i l‖Hs → 0.

However, this means

‖ψ̃k− ψ̃l‖Hs+1 ' ‖ψ̃k− ψ̃l‖L2 +∑
i
‖∂iψ̃k−∂iψ̃ j‖Ḣs (42)

= ‖ψ̃k− ψ̃l‖L2 +∑
i
‖ψ̃∂ik− ψ̃∂i l‖Ḣs −→ 0 (43)

That is, {ψ̃ j} ⊂ C ∞
b is Cauchy in Hs+1. If we now set ψ̂l := ψ̃lχl as in lemma 4, then

{ψ̂l} ⊂S is an approximating sequence for ψ in Hs which is also Cauchy in Hs+1.
Thus ψ ∈ Hs+1.

5 O N T H E M AT T E R O F D UA L I T Y

Let us concern ourselves with what is dual to Hs for s ∈R. In the following, (Hs)′ will
denote the set of continuous linear functionals on Hs, that is,

(Hs)′ =
{

ψ
′ | ψ ′ : Hs→ C,‖ψ ′‖< ∞

}
(44)

We define the bilinear form

γ : S ×S → C (ψ ,ϕ) 7→
∫

Fψ(ξ )Fϕ(−ξ )dξ (45)

and we immediately note that

|γ(ψ ,ϕ)|=
∣∣∫ 〈.〉−sFψ〈.〉sFϕ

∣∣≤ ‖ψ‖H−s‖ϕ‖Hs (46)

for all ψ ,ϕ ∈S . Thus we may extend γ to a continuous bilinear form γ : H−s×Hs→
C.
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Theorem 3. The continuous bilinear form γ induces an isometric isomorphism

H−s→ (Hs)′ (47)

Proof. By the previous estimate we know that for ψ ∈ H−s the linear functional

γψ : Hs→ C ϕ 7→ γ(ψ ,ϕ) (48)

is continuous with ‖γψ‖ ≤ ‖ψ‖H−s . Now let {ψk} ⊂S be an approximating sequence
for ψ ∈ H−s and define

ϕ
0
j := F−1[〈.〉−2sFψ j(−ξ )

]
∈S (49)

Then the sequence {ϕ0
j } is Cauchy in Hs, since 〈.〉sFϕ0

j = 〈.〉−sFψ j and thus con-
verges to some ϕ0 ∈ Hs. But then

γ(ψ ,ϕ0) = lim
j

∫
|Fψ j|2〈.〉−2s = ‖ψ‖2

H−s (50)

On the other hand, we have

‖ϕ0‖Hs =

(∫
〈.〉−2s|Fψ|2

)1/2

= ‖ψ‖H−s (51)

In total, ‖γψ‖ = ‖ψ‖H−s which shows that ψ 7→ γψ is an isometry. All that is left to
show it surjectivitiy. So let ψ ′ ∈ (Hs)′, then by the Theorem of Fréchet-Riesz there
exists some ϕ ∈Hs such that ψ ′ = (. | ϕ)Hs . If we then pick an approximating sequence
{ϕ j} ⊂S for ϕ in Hs, then define

ψ j := F−1[{F (ϕ j)(−ξ )
}∗〈.〉2s] ∈S (52)

Just as before, {ψ j} is Cauchy in H−s and thus converges to some ψ ∈ H−s. By
construction this ψ satisfies ψ ′ = γψ . This completes the proof.
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